Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 21(1): 82, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317841

RESUMO

BACKGROUND: miR-346 was identified as an activator of Androgen Receptor (AR) signalling that associates with DNA damage response (DDR)-linked transcripts in prostate cancer (PC). We sought to delineate the impact of miR-346 on DNA damage, and its potential as a therapeutic agent. METHODS: RNA-IP, RNA-seq, RNA-ISH, DNA fibre assays, in vivo xenograft studies and bioinformatics approaches were used alongside a novel method for amplification-free, single nucleotide-resolution genome-wide mapping of DNA breaks (INDUCE-seq). RESULTS: miR-346 induces rapid and extensive DNA damage in PC cells - the first report of microRNA-induced DNA damage. Mechanistically, this is achieved through transcriptional hyperactivation, R-loop formation and replication stress, leading to checkpoint activation and cell cycle arrest. miR-346 also interacts with genome-protective lncRNA NORAD to disrupt its interaction with PUM2, leading to PUM2 stabilisation and its increased turnover of DNA damage response (DDR) transcripts. Confirming clinical relevance, NORAD expression and activity strongly correlate with poor PC clinical outcomes and increased DDR in biopsy RNA-seq studies. In contrast, miR-346 is associated with improved PC survival. INDUCE-seq reveals that miR-346-induced DSBs occur preferentially at binding sites of the most highly-transcriptionally active transcription factors in PC cells, including c-Myc, FOXA1, HOXB13, NKX3.1, and importantly, AR, resulting in target transcript downregulation. Further, RNA-seq reveals widespread miR-346 and shNORAD dysregulation of DNA damage, replication and cell cycle processes. NORAD drives target-directed miR decay (TDMD) of miR-346 as a novel genome protection mechanism: NORAD silencing increases mature miR-346 levels by several thousand-fold, and WT but not TDMD-mutant NORAD rescues miR-346-induced DNA damage. Importantly, miR-346 sensitises PC cells to DNA-damaging drugs including PARP inhibitor and chemotherapy, and induces tumour regression as a monotherapy in vivo, indicating that targeting miR-346:NORAD balance is a valid therapeutic strategy. CONCLUSIONS: A balancing act between miR-346 and NORAD regulates DNA damage and repair in PC. miR-346 may be particularly effective as a therapeutic in the context of decreased NORAD observed in advanced PC, and in transcriptionally-hyperactive cancer cells.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Ciclo Celular , Dano ao DNA , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética
2.
Oncogene ; 26(12): 1757-68, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16964284

RESUMO

Prohibitin (PHB) is a cell cycle regulatory protein, known to repress E2F1-mediated gene activation via recruitment of transcriptional regulatory factors such as retinoblastoma and histone deacetylase 1 (HDAC1). We previously identified PHB as a target protein of androgen signaling in prostate cancer cells and showed that downregulation of PHB is required for androgen-induced cell cycle entry in these cells. We now present evidence that PHB, which has 54% homology at the protein level to the oestrogen receptor corepressor REA (repressor of oestrogen receptor activity), can repress androgen receptor (AR)-mediated transcription and androgen-dependent cell growth. Depletion of endogenous PHB resulted in an increase in expression of the androgen-regulated prostate-specific antigen gene. The repression appears to be specific to androgen and closely related receptors, as it is also evident for the glucocorticoid and progesterone, but not oestrogen, receptors. In spite of interaction of PHB with HDAC1, HDAC activity is not required for this repression. Although AR and PHB could be co-immunoprecipitated, no direct interaction was detectable, suggesting that PHB forms part of a repressive complex with the AR. Competition with the co-activator SRC1 further suggests that formation of a complex with AR, PHB and other cofactors is the mechanism by which repression is achieved. It appears then that repression of AR activity is one mechanism by which PHB inhibits androgen-dependent growth of prostate cells. Further, this study implies that the AR itself could, by mediating downregulation of a corepressor, be involved in the progression of prostate tumours to the hormone refractory stage.


Assuntos
Antagonistas de Receptores de Andrógenos , Androgênios/fisiologia , Regulação para Baixo , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proibitinas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
3.
Nat Genet ; 29(2): 201-5, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11586302

RESUMO

A comprehensive gene-based map of a genome is a powerful tool for genetic studies and is especially useful for the positional cloning and positional candidate approaches. The availability of gene maps for multiple organisms provides the foundation for detailed conserved-orthology maps showing the correspondence between conserved genomic segments. These maps make it possible to use cross-species information in gene hunts and shed light on the evolutionary forces that shape the genome. Here we report a radiation hybrid map of mouse genes, a combined project of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, the Medical Research Council UK Mouse Genome Centre, and the National Center for Biotechnology Information. The map contains 11,109 genes, screened against the T31 RH panel and positioned relative to a reference map containing 2,280 mouse genetic markers. It includes 3,658 genes homologous to the human genome sequence and provides a framework for overlaying the human genome sequence to the mouse and for sequencing the mouse genome.


Assuntos
Mapeamento Cromossômico , Genoma , Células Híbridas/efeitos da radiação , Animais , Etiquetas de Sequências Expressas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...